- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Berny_Mier_y_Teran, Jorge C (1)
-
Buckley, Thomas N (1)
-
Gepts, Paul (1)
-
Gilbert, Matthew E (1)
-
Magney, Troy S (1)
-
Mills, Colleen (1)
-
Palkovic, Antonia (1)
-
Parker, Travis A (1)
-
Pierce, Marshall A (1)
-
Wadhwani, Yasmin (1)
-
Wong, Christopher_Y S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plants differ widely in how soil drying affects stomatal conductance (gs) and leaf water potential (ψleaf), and in the underlying physiological controls. Efforts to breed crops for drought resilience would benefit from a better understanding of these mechanisms and their diversity. We grew 12 diverse genotypes of common bean (Phaseolus vulgarisL.) and four of tepary bean (P. acutifolius;a highly drought resilient species) in the field under irrigation and post‐flowering drought, and quantified responses ofgsandψleaf, and their controls (soil water potential [ψsoil], evaporative demand [Δw] and plant hydraulic conductance [K]). We hypothesised that (i) common beans would be more “isohydric” (i.e., exhibit strong stomatal closure in drought, minimisingψleafdecline) than tepary beans, and that genotypes with largerψleafdecline (more “anisohydric”) would exhibit (ii) smaller increases in Δw, due to less suppression of evaporative cooling by stomatal closure and hence less canopy warming, but (iii) largerKdeclines due toψleafdecline. Contrary to our hypotheses, we found that half of the common bean genotypes were similarly anisohydric to most tepary beans; canopy temperature was cooler in isohydric genotypes leading to smaller increases in Δwin drought; and that stomatal closure andKdecline were similar in isohydric and anisohydric genotypes.gsandψleafwere virtually insensitive to drought in one tepary genotype (G40068). Our results highlight the potential importance of non‐stomatal mechanisms for leaf cooling, and the variability in drought resilience traits among closely related crop legumes.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
